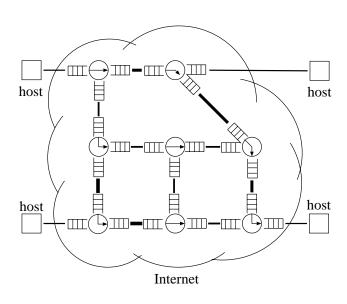
InternetWeek2000 チュートリアル

Diffservの仕組みと動向

長 健二朗 ソニーコンピュータサイエンス研究所 kjc@csl.sony.co.jp

Diffservの概要


- □簡単な仕組みで粗粒度のクラス別QoSを実現する枠組
 - ○ネットワークの入口でクラス分け
 - ▷IPヘッダ内にクラス識別子を書き込む
 - ○ネットワーク内部ではクラス別の優先制御
 - ▷スケーラビリティへの考慮
- □標準化
 - ○IPヘッダ内のDSフィールド
 - ○コンポーネントの記述
- □サービスの実現方法はISPの裁量
 - ○コンポーネントの組み合わせ方
 - ○プロビジョニング

チュートリアルの内容

- □DiffServの背景
 - ○DiffServを理解するにはQoS技術の知識が必要
- □DiffServのアーキテクチャ
 - ○標準化された部分と標準化中の技術
- □DiffServの課題と動向

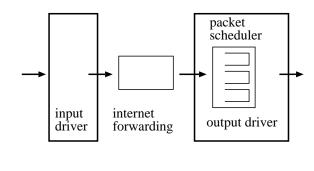
インターネット

- □パケットスイッチング
- □ベストエフォート・サービス

インターネットの利点と問題点

- □利点
 - ○使われていない帯域の有効利用(統計多重)
 - ○簡単な配送系(エンド・エンド・モデル)
 - ▷IP: パケット配送のみ
 - ▶TCP: エンド・エンドで通信を実現
- □問題
 - ○輻輳の発生
 - ▷パケットはだまって捨てられる
 - ○限度のない品質低下の可能性

QoSへの要求


- □90年代に入ってインターネットが爆発的に普及
- □リアルタイムアプリケーションの要求
 - ○音声、動画通信
- □ビジネス向けの高品質サービスの要求
 - ○インターネットを使ったビジネス
- □電話網に匹敵するQoSの要求
 - ○電話網とIP網の逆転現象
 - ▷データ通信量が音声通信量を追い抜く現実
 - ○従来:電話網上にIPネットワークを構築
 - ○今後:IPネットワーク上に電話網を構築

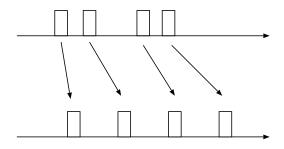
QoSとは何か

- □定量的に表現できる通信品質
 - ○帯域、遅延、ジッタ、パケット損失率
- □優先制御によって実現される
 - ○複数のコンポーネントの組み合わせ
 - ▷アドミション制御
 - ▷シェーピング / ポリシング
 - ▷パケットスケジューリング
 - ▷バッファ管理

QoSの実現

- □出力キューでの優先制御
 - ○仮定
 - ▷ルータのフォワーディングより回線の方が遅い
 - ○回線の高速化による状況の変化
 - ▷ルータ性能がボトルネックの場合、別アプローチが必要
 - ▷しかし、広域網のエンド・エンドでは依然回線がボトルネック

QoS技術要素


- □アドミション制御 (admission control)
 - ○動的な資源配分の判断
- □クラシファイア (classifier)
 - ○到着パケットを対応するグループに分ける機構
- □シェーピング(shaping) / ポリシング(policing)
 - ○バーストを一定のレートにならす
 - ○規定以上の入力がないか監視
- □パケット・スケジューラ (packet scheduler)
 - ○各グループに応じたパケットの送出

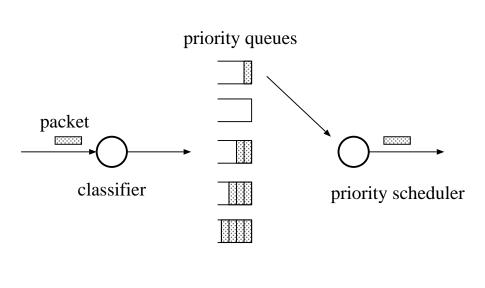
アドミション制御

- □セットアップ・プロトコル (signaling)
 - ○パス上の資源を確保する
- □資源が不足すると事前に失敗する
 - ○エラーが返る
- □資源の解放(特に故障時)
- □関連技術
 - ○ポリシー、ルーティング、課金

シェーピング / ポリシング

- □シェーピング (送り側のメカニズム)
 - ○バーストを一定のレートにならす
 - ▷ジッタを減少
 - ▷ポリシングに適合するよう調整
- □ポリシング (受け側のメカニズム)
 - ○規定以上の入力がないか監視
 - ▷規定以上の入力は廃棄

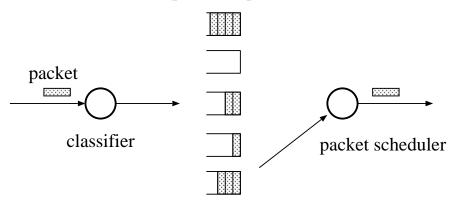
クラシファイア


- □パケットをクラス分けする機構
 - ○IPでは5つ組が使われてきた
 - ⊳src_addr, dst_addr, src_port, dst_port, proto
 - ▷ (ファイアウォールのパケットフィルタと同様)
 - ○ワイルドカード
 - ▷検索コストが高い
 - ○DiffservではTOSフィールドを利用
 - ▶クラシファイアの簡素化

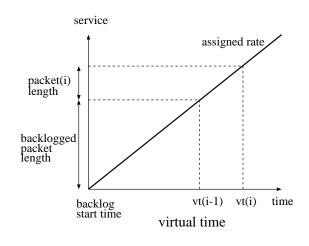
パケット・スケジューラ

- □キューイング方式
 - Priority Queueing
 - OWFQ (Weighted Fair Queueing)
 - ○CBQ (Class-Based Queueing)
- □バッファ管理
 - Orop-Tail/Drop-Head/Drop-Random
 - ○RED (Random Early Detection)

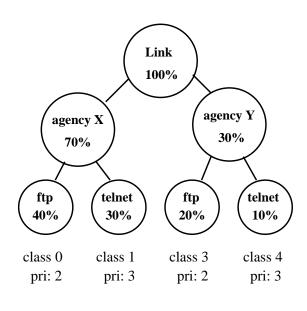
Priority Queueing


- □優先スケジューリング
 - ○単純な機構でリアルタイム性の保証
 - ○低優先度クラスがスターブする可能性

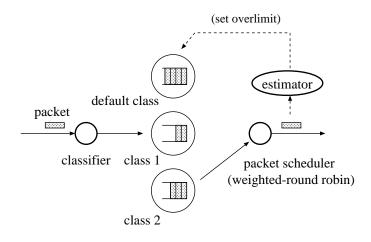
WFQ (Weighted Fair Queueing)


- □フローごとに独立したキューを割り当てる
- □重み付きラウンドロビン・スケジューリング
 - ○他のフローの影響を一定以下に押えることが可能
 - ○フローの数だけキューが必要
 - ▶実装には何らかの近似法が使われる

per-flow queues


WFQ: より理論的な実現方法

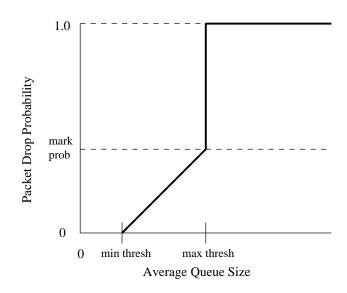
- □流体モデルの近似
 - ○各仮想キューの割り当て帯域、バックログ・バイト数の状態を保持
 - ○パケット到着時にデッドラインを計算
 - ○デッドライン順にキューを管理


階層的リンクの共有

- ○集約されたフローを階層的に管理
 - ▷余剰帯域の分配を制御

CBQ (Class-Based Queueing)

- ○階層的リンクの共有を実現
- ○非ワークコンサービング

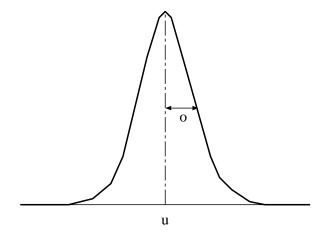


RED (Random Early Detection)

- □平均キュー長に応じた確率でパケットを廃棄
 - ○同期現象の回避
 - ○TCPがキューが溢れる前に流量をコントロールできる
 - ▶キュー長を短く保つ
 - ▷キューイング遅延を小さく保つ
 - ○平均キュー長を使うことで短いバーストを許容
 - ○バッファ占有率に応じたフェアな廃棄
 - ○廃棄のかわりにマークする
 ▷ECN (Explicit Congestion Notification)
- □欠点
 - ○パケット損失に応答しないトランスポートには無防備 >RED Penalty-box

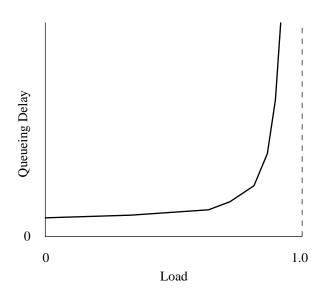
REDパケット廃棄確率

○平均キュー長が2つのスレシュホールドの間にあれば ▷確率的にパケットを廃棄


トラフィックの理論モデル

□キューイング理論

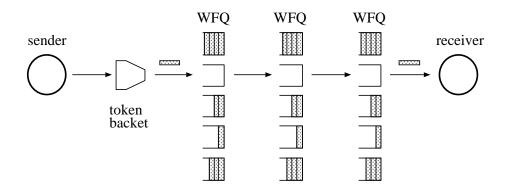
- ○ARPAネット時代に確立
- ○統計的な解析
- ○電話網(回線交換)への応用の成功、発展
 - ▷着呼、通話時間はポアソン分布
- ○データ通信では応用が困難
 - ▷可変長パケット
 - ▷バースト的な通信パターン


ポアソン分布

- ○数学的に取り扱い易い
 - ▶平均値が単一パラメター
- ○平均値を中心とした出現確率
 - ▶平均値から離れると急速に確率が減少

キューイング理論

- ○キューイング・システムの挙動
 - ▶負荷があるポイントを越えると急速に効率悪化



遅延保証の理論

- □Parekhがパケット交換で遅延保証ができることを解析的に 証明
 - ○アドミッション制御
 - ○送出量の制限
 - ○パケットスケジューリング

Parekh's Model

- □トークンバケットとWFQの組み合わせ
 - ○最大遅延保証が可能なことを証明

Parekhの最大遅延計算

○バースト遅延 + 自フローによる遅延 + 他フローによる遅延

$$D_i \equiv \frac{b_i}{g_i} + \frac{(h_i - 1)l_i}{g_i} + \sum_{m=1}^h \frac{l_{max}}{r_m}$$

D_i delay bound for flow i

b_i token bucket size for flow i

 g_i weighted rate for flow i

 h_i hop count for flow i

1 i max packet length for flow i

 \mathbf{r}_m bandwidth at hop m

QoS保証実現へのアプローチ

- □データ通信と音声通信の統合ネットワーク
 - ○電話網の拡張
 - ▶ISDN、ATM (Broadband ISDN)
 - ○インターネット網の拡張
 - ▷IntServ、DiffServ

ATMの特徴

- □固定長セル(遅延保証に有利)
- □ホップごとにVCを書き換える
- □網とユーザネットワークの分離
- □ネットワークの入口で流入量を監視
 - ○ポリシング
- □サービスクラス
 - ○CBR, UBR, VBR, ...
- □しっかり管理されたネットワークが前提
 - ○正しい設定、ポリシング
 - ○簡単なプライオリティ・スケジューリング

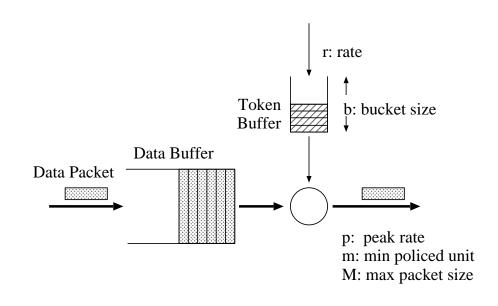
ATMとインターネットとの整合の問題点

- □網からのアプローチ
- □バースト的なトラフィック
 - ○当初の想定より大きなバッファが必要
- □文化の違い?
 - ○使う前に仕様が膨れ上がる
 - ○上位層、制御系がどんどん複雑になっていく
 - ○遅延、エラーへのこだわり

ラベルスイッチング技術

- □ATMとインターネットを融合する技術として登場
 - ○ATM、フレームリレイ
- □レイヤ2とレイヤ3の統合
 - ○ホップごとにタグを書き換える
- □2つの方式
 - ○トラフィック・ドリブン
 - ○トポロジ・ドリブン
- □TE(トラフィックエンジニアリング)技術として再注目されている
 - ○QoSから経路管理へ

IntServ/RSVP


- □インターネットでのQoSの実現
 - ○研究 89~ IETF 94~
- □ IntServの標準化
 - ○IntServ
 - ▷QoSパラメータの指定、交換のフォーマット
 - ○RSVP (ReSerVation Protocol)
 - ▷IntServモデルを実現する資源予約プロトコル
 - ▷IntServパラメータを交換してサービスを実現

IntServの特徴

- □2つのサービスモデル
 - ○Guaranteed QoS controlサービス
 - ▷従来の意味でのQoS保証
 - ○Controlled-Loadサービス
 - ▷低負荷のネットワークをエミュレート
 - ▷適応型アプリケーションを想定
 - ▷LANでなら動作するAppをWANでも動くようにする
- □トークンバケットによるパラメータの指定
 - ○短いバーストを許容する
 - ▶TCPとの親和性

トークンバケット

□トークンバケット・パラメタ [r, b, p, m, M]

RSVPの特徴

- □ソフトステート
- □レシーバ主導
- □マルチキャストのサポート
 - ○予約のマージ
- □非IntServノードの透過
- □ルーティングプロトコルからの分離
 - ○ルーティング情報をもらって利用
- □実装、運用依存部の分離
 - ○アドミション制御
 - ○トラフィック制御
 - ○ポリシ制御

RSVPの問題

- □スケーラビリティ
 - ○中間ルータにフローごとのステートが必要
 - ○バックボーンではステート数が膨大になる
- □技術主導で進み、現状とのギャップ
 - ○メカニズムが複雑すぎる
 - ○システム管理が困難
 - ○ビジネスモデルとの整合
 - ▷課金、コスト
- □シグナリングは本質的に難しい
 - ○アドミション制御
 - ▷動的な状態管理
 - ○動的な資源予約
 - ○エラー処理
 - ○システム管理

DiffServの登場の背景

- □商用ISPからの要求
 - ○ベストエフォートより高品位のサービスを提供する
 - ▷すでに非標準な方式で実施されていた
- □IntServ/RSVPへの疑問
- □簡単な方式ですぐにISPが使える標準の必要性
 - ○簡単な仕組み
 - ○スケーラブルな構造
 - ○プロバイダのビジネスモデルにマッチすること
- □TOSフィールドを再定義して利用する

DiffServのアイデア □相対的なQoS (CoS: Class of Service) □プロビジョニング □TOSフィールドの再定義 □柔軟なサービスモデル

相対的なQoS (CoS: Class of Service)

- □絶対的なQoS: 遅延、帯域等の絶対値で指定
- □相対的なQoS: 通信品質の異なるクラス
 - ○実現が容易
 - ○インターネット通信にむいている
 - ○厳密な定義や理論解析は困難
- □絶対的なQoSと相対的なQoSは混在できる

プロビジョニング

- □資源の余裕配分の重要な役割
- □制御と余裕資源配分のバランス
- □バランスポイント
 - ○コスト効率
 - ○運用の容易性
 - ○将来の拡張性
- □問題点
 - ○理論解析が困難

QoSに対する考え方の変化

- □従来のQoSアプローチ
 - ○理論的最悪値の積み上げ計算
 - ▷大きくなり過ぎる
 - ⊳実用上あまり有効でない
 - ○QoS制御するかしないかの二者択一
- □より現実的なQoSアプローチ
 - ○ルーズな制御
 - ▷広帯域な回線が利用可能
 - ▷厳密な制御の必要性が減少
 - ○賢いエンドシステムを想定
 - ▷監視より情報のフィードバック
 - ○QoS制御の幅広い選択肢
 - ▷プロビジョニングも重要な要素
 - ▶DiffServは中間的なQoS制御

TOSフィールドの再定義

○IPv4ヘッダ

	4-bit version	4bit head- er length	8-bit type of service (TOS)	16-bit total length (in bytes)					
		16-bit identification			13-bit fragment offset				
		ne to live TL)	8-bit protocol	16-bit header checksum					
	32-bit source IP address								
Ī	32-bit source IP address								
[{	options (if any)								
[{	data 2								

TOSフィールド (1)

- ○IP precedence (3bits)
 - ▷0-7の優先順位
- ○TOS (4bits)
 - ▷低遅延、広帯域、高信頼性、低コストの指定

precedence	low delay	through- put	relia- bility	min cost	
------------	--------------	-----------------	------------------	-------------	--

TOSフィールド (2)

- □例
 - ○precedence: ルーティングプロトコルや機器の制御を優先
 - ○telnet: 低遅延を指定
- □組織内での使用を仮定
- □現実にはあまり使われていない
 - ○定義があいまいで相互運用できない
 - ○正しい値が設定されている保証がない
 - ○悪用される可能性
- □DiffservはTOSフィールドの拡張とも考えられる
 - ○組織間での利用を考慮
 - ⊳各ノードの役割を分離

サービスモデル

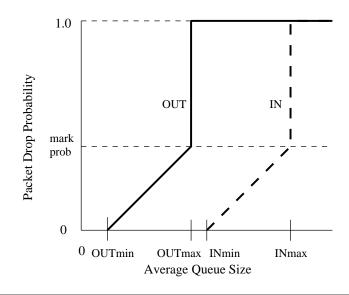
- □ユーザ契約、ISP間契約
 - ○契約に従ったネットワークの設定
 - ▷SLA (Service Level Agreement)
 - ▷SLS (Service Level Specification)
- □コンポーネント
 - ○個々のコンポーネントは単にメカニズムを提供
- □サービスの実現
 - ○ポリシ、プロビジョニング、コンポーネントの組み合わせ
 - ○契約を満足するサービスを実現するネットワークを構築
- □ISPの裁量の自由度の増加
 - ○新しいサービスメニューの提案が可能
 - ○工夫すればコストダウンできる
 - ▷さまざまなトレードオフ
 - の力量が問われる

Diffservの標準化 IETFでの活動

- □1997/08 Munich IETF
 - ○Int-serv WGが Diff-serv BOFを開いた
 - Premium Service Model
 - Drop precedence Model

 → Drop precedence Model
 - Cisco's CoS
- □1998/03 IETF Diff-serv WG設立
 - ○大学、政府、ベンダ、ISPの大物が協力
 - ▷急速に標準化が進んだ

Premium Service Model


- □EF PHBの原型
 - ○V. Jacobson (LBL) の提案
- □低遅延の保証
 - ○単純な優先スケジューリング
 - ○帯域割り当ては十分小さくする (例えば10%以下)
 - ○ポリシング
- □仮想専用線サービス
 - ○専用線と同様に使える
 - ▶集約によりジッタは増加
 - ○余剰帯域は利用可能
- □基本的にATMのCBRと同じ考え方

Drop precedence Model

- □AF PHBの原型
 - ○D. Clark (MIT)の提案
- □RIO (RED with IN and OUT)
 - ○各パケットに契約内 / 外のマークを付ける
 - ○輻輳時には契約外パケットから廃棄
 - ○REDを拡張したRIOを提案
 - ▷バッファ管理のみの簡単な構造
 - ▷順序入れ換えが起こらない
- □最低帯域保証サービス

RIO (RED with In and Out)

- ○プロファイルに対してIN/OUTを判別
- ○IN、OUTパケットに独立したREDパラメータを与える
- ○輻輳が起こるとOUTパケットから先に廃棄される

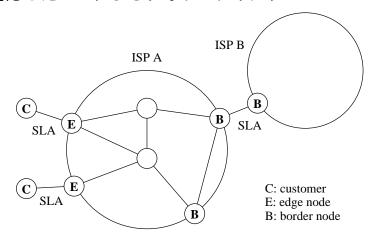
Cisco's CoS

- □Class Selector PHBの原型
 - ○F. Baker (Cisco)の提案
- □CiscoのIP Precedenceの実装
 - ○クラスの相対的な差別化
 - ○WRED (Weighted RED): 7段階のRIO

IETF DiffServワーキンググループ

- □相互運用に必要な最小限の取り決めの実現
 - ○ドメイン間、ベンダー間の相互運用
 - ○DSフィールドの規定 (RFC1394を更新する)
 - ▷IPv4のTOSフィールド
 - ▷IPv6のTraffic Classフィールド
 - ○標準PHBを規定
 - ▷アーキテクチャ
 - ▷運用のために必要な具体的な使用例
 - ⊳実証実験開始のための枠組
 - ○やらないこと
 - ▷個別フローを特定するメカニズム
 - ⊳マーキングをサポートするシグナリング
 - ▷エンド・エンド・サービスの定義
 - ▷SLA (Serviece Level Agreement)

DiffServアーキテクチャへの要求 (1)


- □複数のネットワークにまたがる幅広いサービスやポリシに 利用できる
- □特定のアプリケーションに依存しない
- □既存のアプリケーションを変更する必要がない
- □シグナリングに依存しない
 - ○staticで簡単な構成が可能

DiffServアーキテクチャへの要求 (2)

- □簡単な構造のforwarding behaviorのみを規定
 - ○ルータのコストを上げない
 - ○将来の高速ルータ設計の障害にならない
- □コア・ネットワークでは
 - ○マイクロフローやユーザごとの状態を持たない
 - ○集約フローのみを扱う
 - ○簡単なクラシファイア (BAクラシファイア)
- □DiffServ非対応機器との相互運用
- □段階的な導入が可能

アーキテクチャモデル

- □ネットワークの入口
 - ○クラシファイ、コンディショニング
 - ○DSCPを設定 (behavior aggregate)
- □コア・ネットワーク
 - ○DSCPに対応したPHBによるフォワーディング

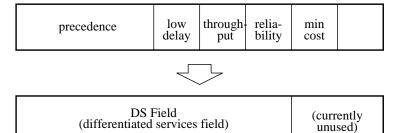
DSドメイン

- □インターネット・ピアリング・モデル
 - ○2階層構造
 - ○各DSドメインは内部の管理に責任
- □閉じたネットワーク
 - ○すべての流入パケットが監視可能
 - ▷パケットがDSドメインに入る所で
 - □少数のクラスに分ける
 - □対応するDSCPを書き込む
 - ▷DSドメイン内部で
 - □DSCPのみを参照して優先制御
- □DSドメイン内部のノードは
 - ○共通のポリシで管理
 - ○共通のPHBのセットが設定
 - ○共涌のを使用して運用

DSサービス領域(リージョン)

- □相互運用が可能な連続したDSドメイン
 - ○ピアリングルールが確立している
 - ▷共通なDSCP、PHBの使用
 - ▷DSCPのマッピングが設定されている

エッジノードとコアノード

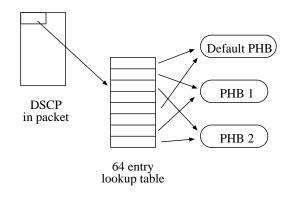

- □DSドメイン
 - ○エッジノードとコアノードで構成される
- □エッジノード
 - ○個別フローの処理(機能優先)
 - ▷ユーザごとの処理、状態保持
 - ○入口処理
 - ⊳トラフィック・コンディショニング
 - ○出口処理
 - ▷ピアリング契約に応じたシェーピングや再マーキング
- □コアノード
 - ○集約フローのみ処理(性能優先)

DSフールド

- □TOSフィールドを再定義
 - ○内6ビットを使用
- □ DSCP (DiffServ Code Point)
 - ○個々のDSフィールド値
- □同時使用はたかだか64個
 - ○DSドメインにローカルな使用
 - ▷拡張性
 - ○少数の標準DSCP
 - ▷互換性

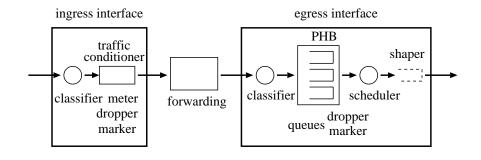
DiffServe CodePoint

- ○TOSフィールドをDSフィールドに再定義
 - ▶2ビットはECNのために残されている
 - ▷IPv6のTraffic Classフィールドにも適用

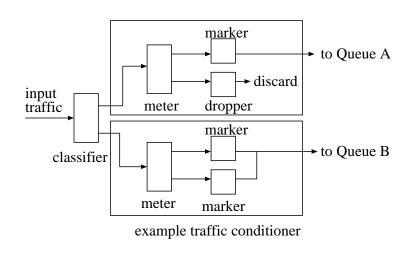


PHB (Per-Hop Behavior)

- □フォワーディングのメカニズムの記述
 - ○外部から観測できる挙動
 - ▷実装非依存
 - ○集約したフローのみを扱う
 - ▷限られたDSCPスペース
 - ⊳スケーラビリティ


PHBの選択

- ○DSCPからテーブルを引いて対応するPHBを得る
 - ▷64個のテーブルエントリ
 - ▷複数のDSCPが同じPHBにマップ可能


Diffservを構成するコンポーネント

- ○入力インターフェイス
 - ▷クラシファイア、トラフィック・コンディショナ
- ○出力インターフェイス
 - ▷クラシファイア、キュー構造 (PHB)、シェーパー

トラフィック・コンディショニング

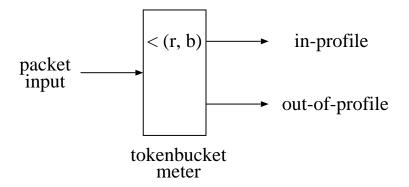
- □入力インターフェイス
 - ○クラシファイア
 - ○トラフィック・コンディショナ
 - ▷メーター、 アクション・エレメント(marker, dropper)

パケット・クラシフィケーション

- □パケットを対応するクラスにマップ
- □パケット・フィルタ
 - ○マッチするパケットを検出するルール
- □2種類のクラシファイア
 - ○BA(Behavior Aggregate)クラシファイア
 - ▶DSフィールドのみを参照
 - ▷コアノードで使用される
 - ○MF(Multi-Field)クラシファイア
 - ▷パケットヘッダのDSフィールド以外も参照
 - ▷エッジノードで使用される

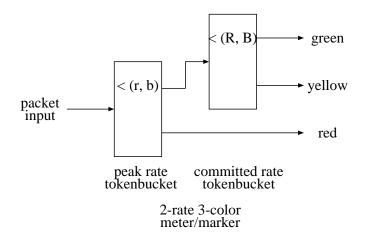
トラフィック・プロファイル

- □契約に指定されたルール
 - ○例: token-bucket r, b
 - ▷パケットごとの判定
 - □in-profile: 契約値内
 - □out-of-profile: 契約値外


メーター

- □クラシファイアが選択したパケットが
 - ○トラフィック・プロファイルに適合しているか判定
- □メータの種類
 - ○平均レート
 - ○トークンバケット
 - ocolor-aware/color-blind

トークンバケット・メーター


oprofile: r:rate, b:depth

output: in-profile or out-of-profile

2-rate 3-color meter/marker

- opeak profile: r:rate, b:depth
- ocommitted profile: R:rate, B:depth
- output: green, yellow or red

アクション・エレメント

- □マーカ
 - ○DSフィールドに特定のDSCPを書き込む
- □シェーパー
 - ○パケットを遅延させてプロファイルに適合させる
 - (あまり使われない)
- □ドロッパ
 - ○パケットを廃棄する

PHB (Per-Hop Behavior)

- □パケットフォワーディング動作の記述
 - ○外部から観測できる記述 (特定の実装を指さない)
 - ○例
 - ▷最低帯域を保証する
 - ▶ウエイトに比例した余剰帯域の分配を行なう
- □PHBグループ
 - ○セットでひとつのクラスを構成する複数のPHB
 - ⊳AFØDrop precedecnce
 - ○同一の属性を持つ独立した複数のPHB
 - ⊳ AF Ø Class

PHBの実装

- □パケットスケジューリング
- □バッファ管理
- □各集約フローは到着順序を守って送出する必要
 - ○トランスポートのパフォーマンス

標準PHB □Default PHB □Class Selector PHBグループ □EF PHB □AF PHBグループ

コードポイントの割り当て

□コード空間

○xxxxx0: Standard PHBs (32個)

○xxxx11: Experimental/Local Use (1 6 個)

○xxxx01: Experimental/Local Use* (1 6 個)

□スタンダード空間

○000000: Default PHB (1個)

○xxx000: Class Selector PHBs (7個)

○cccdd0: Assured Forwarding PHBs (1 2 個)

 $^{\triangleright}$ ccc: class {1,2,3,4} dd: drop prec {1,2,3}

○101110: Expedited Forwarding PHB (1個)

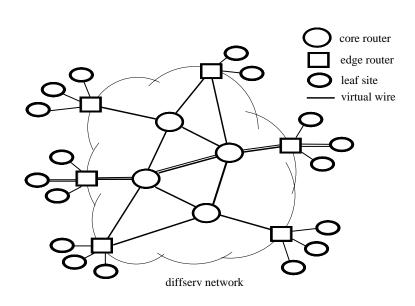
Default PHB □DSCP = 000000 □ベストエフォート ○スターブしない必要 ▷最低限の資源割り当てを保証する

Class Selector PHBグループ

- □IP Precedence互換の優先度指定
- □Precedenceが大きい
 - ○遅延が小さく、パケット損失も少ない
- □実装例
 - \circ WFQ, WRR, CBQ

EF (Expedited Forwarding) PHB

- □低損失、低遅延、低ジッタサービス
- □2つの構成要素
 - ○PHB
 - ▷最低送出レートが保証される
 - Conditioning
 - ▷すべてのノードで最大流入量を
 - □保証される最低送出レート以下にする
 - ▷厳密なポリシングの必要
 - ▷規定値を越える流入パケットは捨てる
- □実装例
 - ○PQ、WFQ, WRR, CBQ


AF (Assured Forwarding) PHBグループ

- □4つの独立したクラス
 - ○(例:ファース、ビジネス、エコノミー、マルチキャスト)
- □各クラスに3つのドロップPrecedence
 - 3 レベルあればTCPをUDPから守れる
 - ○Precedenceに応じた確率的な廃棄
 - ○クラス内のパケット順序入れ換えの禁止

PDB (Per-Domain Behavior)

- □DSドメインのエッジ・エッジでの挙動の記述
 - ○標準化の第2フェーズ
 - ▶PHBはノードの挙動を記述
 - ▶PDBは抽象化をDSドメインのエッジ間に広げる
- □PDBパラメタの例
 - ○最大ホップ数、エッジの数
 - ○最低帯域、最大遅延、バッファ容量
- □ Virtual Wire PDB
 - ○EF PHBを使った仮想専用線サービスPDB

Virtual Wire PDB

サービス構築例 □ AFを使った仮想専用線 □ (あくまでも選解を助けるための例です)

EFを使った仮想専用線サービスの例 (1)

□顧客契約 ○connection: from <src> to <dst> ○profile: <r> ○profile: <r> ○in-profile: □delay: less than <msec> □packet loss: less than <%> ▷out-of-profile: □discard □エッジの設定 ○classifier: <src><dst> to customer's TC ○TC (traffic conditioner):

betokenbucket meter: <r>,
□in-profile: mark <EF DSCP>

□out-of-profile: drop

EFを使った仮想専用線サービスの例 (2)

- □Provisioningの例
 - ○DSドメイン内のすべてのルータで
 - ▷EF用に容量の10%をリザーブ
 - ○サービスの販売
 - ▷<src> to <dst>のパス上のすべてのノードで
 - □EFの合計がリザーブ値を越えないように販売
 - ○保証できるパスの遅延を計算して顧客契約に反映

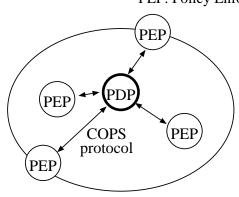
AFを使った最低帯域保証サービスの例 (1)

□顧客契約

- oconnection: from <src>
- ocommitted profile: <R>:rate, :tokenbucket depth
- opeak profile: <r>:rate, :tokenbucket depth
 - ▷in-committed-profile: packet loss less than <%>
 - ▷in-peak-profile: packet loss less than <%>
 - ⊳out-of-profile: best effort

□エッジの設定

- oclassifier: <src> to customer's TC
- ○TC (traffic conditioner):
 - ⊳trTCM: <R>,,<r>,
 - □green: mark <AF11 DSCP>
 - □yellow: mark <AF12 DSCP>
 - □red: mark <AF13 DSCP>


AFを使った最低帯域保証サービス (2)

- □Provisioningの例
 - ○DSドメイン内のすべてのルータで
 - ▷AF1用に容量の50%を割り当てる
 - ○サービスの販売
 - ▷実績ベースでgreenパケットが廃棄されないように販売
 - ○トラフィック集中が発生する可能性
 - ▷実績ベース以外のルールの必要性

ポリシーサーバ

- □モデル
 - ○PEP トラフィック制御をするルータ
 - ○PDP ポリシー管理サーバー
- □プロトコルの標準化 (COPS, PIB)
 - ○まだ一般化された実装がない

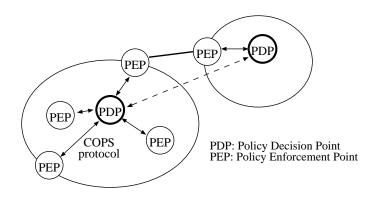
PDP: Policy Decision Point PEP: Policy Enforcement Point

ポリシー制御プロトコル

- □COPS (Common Open Policy Service)
 - ○もともとRSVPのために提案、後に一般化
 - ○クライアント/サーバ・モデルの簡単なプロトコル
 - ▷アドミション制御のためのRequest/Decision
 - ▷遠隔システム設定 (COPS-PR)
 - ○トランスポートにはTCPを利用
 - ○オペークなオブジェクト(ポリシールール)
 - PIB (Policy Information Base)
 - □RSVP PIB, diffserv PIB
 - ○セキュリティサポート
 - ▶ Integrity object or IPSec

COPS-PR

- □COPS-PR (COPS Usage for Policy Provisioning)
 - ○PEPの起動時
 - ▷COPSコネクションをオープン
 - ▷ Configuration Request (PEP to PDP)
 - □ハードウエア/ソフトウエア、パラメータのレポート
 - Decision (PDP to PEP)
 - □Policyのダウンロード
 - □PDPはポリシーをローカルメカニズムにマップして設定
 - ○PDPからの変更
 - ▷unsolicited decision (install/update/delete)
 - ○PEPからの変更
 - ▷unsolicited request


DiffServの課題と動向 □DSドメイン境界での再マーキング □受信者ベースのサービス □マルチキャスト □ Bandwidth Broker □RSVP over DiffServ □ DiffServ over MPLS DSドメイン境界での再マーキング □等価なPHBへのマッピングが可能か?

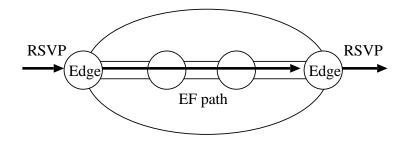
□契約量を越えた時

○別のマッピングが可能か?

Bandwidth Broker

- ○動的な資源配分のモデル
- ○異なるDSドメインのPDP同士がピアリング契約を交渉

受信者ベースのサービス


- □DiffServは送信者の契約に応じた扱い
 - ○受信者の契約が反映されない
 - ○一般ユーザに利益が少ない
- □上位層で受信者契約を反映する仕組みが必要
 - ○一種のシグナリング?
 - ○アイデアだけで実体はない

マルチキャスト

- □ユニキャストと混在させる問題
 - ○より多くの資源を消費する可能性
- □グループはダイナミックなのでProvisioningが困難
- □境界問題
 - ○ピアドメインとのマッピング

RSVP over DiffServ

- □コア・ネットワークをDiffServでバイパス
 - ○エッジでのみRSVPの処理
 - ○RSVPのスケーラビリティの問題を解決

まとめ

□ネットワーク・サービス

- ○従来は機器ベンダーが機器機能として提供
- ○今後はISPの運用技術として実現される
- □ DiffServ
 - ○枠組は固まってきた
 - ○対応製品の登場
- □DiffServの運用
 - ○ネットワーク管理ツールの必要
 - ○現時点ではスタティックな設定
 - ▷小規模ネットワークなら十分利用可能
 - ▷大規模ネットワーク
 - □運用については分かっていない
 - □実証実験をとおした経験の蓄積が必要

<関連リンク>

IETF: http://www.ietf.org/

IETF diffserv WG: http://www.ietf.org/html.charters/diffserv-charter.html

IETF issll WG: http://www.ietf.org/html.charters/issll-charter.html IETF rap WG: http://www.ietf.org/html.charters/rap-charter.html

ALTQ: http://www.csl.sony.co.jp/~kjc/software.html

<関連書籍>

Internet Performance Survival Guide. G. Huston.

Wiley. ISBN 0-471-37808-9. 2000.

Differentiated Services for the Internet, K. Kilkki.

ISBN 1-57870-132-5, 1999.

Quality of Service. P. Ferguson and G. Huston.

Wiley, ISBN 0-471-24358-2. 1998.

An Engineering Approach to Computer Networking, S. Keshav.

Addison-Wesley, ISBN 0-201-63442-2. 1997.

High-speed Networks: TCP/IP and ATM Design Principles. W. Stallings.

Prentice Hall, ISBN 0-13-904954-1. 1998.

Gigabit Networking. C. Partridge.

Addison-Wesley, ISBN 0-201-56333-9. 1993.